\qquad

1 Topics

Chapter 1: Unbounded Operators
1.1: Domains, Graphs, Adjoints, and Spectrum
1.2: Symmetric and Self-Adjoint Operators: The Basic Criterion for Self-Adjointness
1.3: The Spectral Theorem
1.4: Stone's Theorem

Chapter 2: Locally Convex Spaces
2.1: Fréchet Spaces
2.2: Schwartz Space and the Tempered Distributions
2.3: Inductive Limits: Generalized Functions and Weak Solutions to PDEs
2.4: Hölder and Sobolev Spaces

Chapter 3: The Fourier Transform
3.1: The Fourier Transform of $\mathscr{S}\left(\mathbb{R}^{n}\right)$ and $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and Convolutions
3.2: The Range of the Fourier Transform: Classical Spaces
3.3: Solving PDEs with Transform Methods

Chapter 4: Introduction to C^{*}-algebras
4.1: Definitions and Examples
4.2: The Riesz Functional Calculus
4.3: Abelian C^{*}-algebras and the Functional Calculus
4.4: The Positive Elements in an C^{*}-algebra
4.5: Ideals in a C^{*}-algebra
4.6: Representations of a C^{*}-algebra
4.7: Positive Linear Functionals and the GNS Construction

Chapter 5: Special Classes of Operators
5.1: Trace Class and Hilbert-Schmidt Operators
5.2: Fredholm Operators and Behavior of the Spectrum Under Compact Pertubations

2 Homework Problems

1. Define

$$
A=i \frac{d}{d x}
$$

on $L^{2}[0,1]$. Define two domains for $A: \mathcal{D}_{1}(A)=A C[0,1]$ and $\mathcal{D}_{2}(A)=\{f \in A C[0,1]$: $f(0)=0\}$ Prove that A is closed on both domains.
2. Let A and B be operators defined on a Hilbert space. Show that $(\alpha A)^{*}=\bar{\alpha} A^{*}$ for scalar α. Moreover show $A^{*}+B^{*} \subset(A+B)^{*}$ where $\mathcal{D}\left(A^{*}+B^{*}\right)=\mathcal{D}\left(A^{*}\right) \cap \mathcal{D}\left(B^{*}\right)$. Show that $(A+B)^{*}=A^{*}+B^{*}$ only if one of the operators is bounded. Give an example where equality doesn't hold.
3. Let A and B be operators defined on a Hilbert space such that $A B$ is densely defined. Prove that $(A B)^{*} \supset B^{*} A^{*}$. Moreover if B is bounded then show $(B A)^{*}=A^{*} B^{*}$.
4. An alternative way to define a normal operator(to allow for unboundedness) is the following: A is called normal if $\|A f\|=\left\|A^{*} f\right\|$ for all $f \in \mathcal{D}(A)=\mathcal{D}\left(A^{*}\right)$. Prove that if A is normal then so is $A+z$ for all $z \in \mathbb{C}$.
5. Using the above definition, prove that normal operators are always closed.
6. Define

$$
A=-i \frac{d}{d x}
$$

on $L^{2}[0,2 \pi]$ with domain $\mathcal{D}(A)=\left\{f \in C^{1}[0,2 \pi]: f(0)=f(2 \pi)=0\right\}$. Prove that A is symmetric. Find A^{*} and its respective domain $\mathcal{D}\left(A^{*}\right)$. Is A self-adjoint? If not find a self-adjoint extension of A.
7. (a) Suppose that B is a symmetric operator such that $A \subset B$ and that $\operatorname{Ran}(A+i)=$ $\operatorname{Ran}(B+i)$. Prove that $B=A$.
(b) Suppose A is a symmetric operator with $\operatorname{Ran}(A+i)=\mathcal{H}$ but $\operatorname{Ran}(A-i) \neq \mathcal{H}$. Prove that A has no self-adjoint extensions.
8. Define

$$
A=-\frac{d^{2}}{d x^{2}}
$$

on $L^{2}(\mathbb{R})$ with domain $\mathcal{D}(A)=C_{0}^{\infty}(\mathbb{R})$. Compute A^{*} and its respective domain $\mathcal{D}\left(A^{*}\right)$. Is A essentially self-adjoint?
9. Let M_{g} be the multiplication operator by g. Find two dense linear subspaces of $L^{2}(\mathbb{R})$, D_{1} and D_{2} with $D_{1} \cap D_{2}=\{0\}$ so that M_{x} is essentially self-adjoint on D_{1} and $M_{x^{2}}$ is essentially self-adjoint on D_{2}.
10. Suppose A is self-adjoint and B is any operator such that $\left\|B-z_{0}\right\| \leq r$ for some $z_{0} \in \mathbb{C}$ and $r>0$. Show that $\sigma(A+B) \subset \sigma(A)+\overline{B_{r}\left(z_{0}\right)}$ where $B_{r}\left(z_{0}\right)$ is the ball centered at z_{0} with radius r.
11. Let A be an self-adjoint operator and let P_{A} be its corresponding projection valued measures. Prove that:

$$
\sigma(A)=\left\{\lambda \in \mathbb{R}: P_{A}(\lambda-\varepsilon, \lambda+\varepsilon) \neq 0, \text { for all } \varepsilon>0\right\}
$$

12. Let A be a closed operator and set $|A|=\sqrt{A^{*} A}$. Prove that $\||A| f\|=\|A f\|$. Deduce that $\operatorname{Ker}(A)=\operatorname{Ker}(|A|)=\operatorname{Ran}(|A|)^{\perp}$ and that

$$
U= \begin{cases}g=|A| f \mapsto A f & \text { if } g \in \operatorname{Ran}(|A|) \\ g \mapsto 0 & \text { if } g \in \operatorname{Ker}(|A|)\end{cases}
$$

extends to a well-defined partial isometry. Conclude that $A=U|A|$. (This is an extension of the polar decomposition for not necessarily bounded operators)
13. Let A be a self-adjoint operator. Prove that the resolvent operator can be realized as the following representation:

$$
R_{A}(z)=\int_{\mathbb{R}} \frac{1}{\lambda-z} d P_{\lambda}
$$

Deduce that the quadratic form $F_{\psi}(z)=\left\langle\psi, R_{A}(z) \psi\right\rangle$ is a holomorphic function from the upper half plane to itself. (These types of functions are called Herglotz functions and this process is called the Borel transform of measures.)
14. Consider the one-parameter unitary group given by $U(t) f(x)=f(x-t \bmod 2 \pi)$ for $f \in L^{2}(0,2 \pi)$. What is the generator of U ?
15. Suppose M is the Riemann surface of \sqrt{z} and $\mathcal{H}=L^{2}(M)$ with Lebesgue measure locally. Define the following two operators:

$$
A=-i \frac{\partial}{\partial x} \text { and } B=-i \frac{\partial}{\partial y}
$$

both with domain $\mathcal{D}=\left\{f \in C^{\infty}(M)\right.$: $\operatorname{supp}(f)$ is compact , $\left.0 \notin \operatorname{supp}(f)\right\}$. Prove that both A and B are essentially self-adjoint, both $A, B: \mathcal{D} \rightarrow \mathcal{D}$, and $(A B) f=(B A) f$ for all $f \in \mathcal{D}$. However show that $\exp (i t \bar{A})$ and $\exp (i t \bar{B})$ do not commute.
16. Let μ be a finite complex Borel measure on \mathbb{R} and let

$$
\hat{\mu}(t)=\int_{\mathbb{R}} e^{-i t \lambda} d \mu(\lambda)
$$

Prove that

$$
\lim _{c \rightarrow \infty} \frac{1}{c} \int_{0}^{c}|\hat{\mu}(t)|^{2} d t=\sum_{\lambda \in \mathbb{R}}|\mu(\{\lambda\})|^{2}
$$

where the sum on the right hand side is finite.
17. Let A be a self-adjoint operator. Using the previous problem, prove that $\lim _{t \rightarrow \infty} U(t)=0$ where $U(t)=\exp (-i t A)$.
18. Let X be an infinite dimensional locally convex space and X^{*} its dual space. Prove that no weakly continuous semi-norm is actually a norm. (This shows semi-norms are essential tools.)
19. Let $\left\{\rho_{\alpha}\right\}_{\alpha \in A}$ be a family of semi-norms so that some finite sum $\rho_{\alpha_{1}}+\cdots+\rho_{\alpha_{n}}$ is actually a norm. Prove that $\left\{\rho_{\alpha}\right\}_{\alpha \in A}$ is equivalent to a family of norms.
20. (Delta "function") Let $b \in \mathbb{R}$. Define δ_{b} to be the linear functional $\delta_{b}(f)=f(b)$ for $f \in \mathscr{S}(\mathbb{R})$. Prove that $\delta_{b} \in \mathscr{S}^{\prime}(\mathbb{R})$, but there is no function $g(x)$ for which

$$
\delta_{b}(f)=\int_{\mathbb{R}} g(x) f(x) d x
$$

for all $f \in \mathscr{S}(\mathbb{R})$. However prove that there is a measure μ_{b} such that

$$
\delta_{b}(f)=\int_{\mathbb{R}} f(x) d \mu_{b}(x) .
$$

21. Let δ_{b} be defined as above. Prove that $\delta_{b}^{\prime}(f)=-f(b)$ in the distributional sense.
22. The Cauchy principle part integral is given by:

$$
\mathscr{P}\left(\frac{1}{x}\right): f \mapsto \lim _{\varepsilon \downarrow 0} \int_{|x| \geq \varepsilon} \frac{1}{x} f(x) d x .
$$

Prove that $\mathscr{P}(1 / x)$ is a distribution and the following limit holds in the weak topology sense on \mathscr{S}^{\prime} to \mathscr{S} :

$$
\lim _{\varepsilon \downarrow 0} \frac{1}{x-x_{0}+i \varepsilon}=\mathscr{P}\left(\frac{1}{x-x_{0}}\right)-i \pi \delta\left(x-x_{0}\right) .
$$

23. Consider the following initial value problem:

$$
\left\{\begin{aligned}
u_{t}+\frac{1}{2}\|\nabla u\|^{2} & =0 & & \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u & =\|x\| & & \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{aligned}\right.
$$

Define the following function:

$$
u(x, t)=\min _{y \in \mathbb{R}^{n}}\left\{\frac{\|x-y\|^{2}}{2 t}+\|y\|\right\} .
$$

Prove that u is a weak solution to the PDE.
24. Prove that the Hölder space, $C^{k, \gamma}(\bar{\Omega})$, is a Banach space.
25. Suppose $u, v \in W^{k, p}(\Omega)$ and $|\alpha| \leq k$.
(a) Prove that $D^{\alpha} \in W^{k-|\alpha|, p}(\Omega)$ and $D^{\beta}\left(D^{\alpha} u\right)=D^{\alpha}\left(D^{\beta} u\right)=D^{\alpha+\beta} u$ for all multi-indicies α, β with $|\alpha|+|\beta| \leq k$.
(b) Prove that for each $\lambda, \mu \in \mathbb{R}$, one has $\lambda u+\mu v \in W^{k, p}(\Omega)$ and $D^{\alpha}(\lambda u+\mu v)=\lambda D^{\alpha} u+\mu D^{\alpha} v$ with $|\alpha| \leq k$.
(c) Prove that if $U \subset \Omega$ open, then $u \in W^{k, p}(U)$.
(d) Prove that if $w \in C_{c}^{\infty}(\Omega)$ then $w u \in W^{k, p}$ and

$$
D^{\alpha}(w u)=\sum_{\beta \leq \alpha}\binom{\alpha}{\beta} D^{\beta} w D^{\alpha-\beta} u
$$

26. Let $\Omega=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\left|x_{1}\right|,\left|x_{2}\right|<1\right\}$. Define

$$
u(x)= \begin{cases}1-x_{1} & \text { if } x_{1}>0,\left|x_{2}\right|<x_{1} \\ 1+x_{1} & \text { if } x_{1}<0,\left|x_{2}\right|<-x_{1} \\ 1-x_{2} & \text { if } x_{2}>0,\left|x_{1}\right|<x_{2} \\ 1+x_{2} & \text { if } x_{2}<0,\left|x_{1}\right|<-x_{2}\end{cases}
$$

For which $1 \leq p \leq \infty$ does u belong to $W^{k, p}(\Omega)$.
27. Given $\Omega \subset \mathbb{R}^{n}$, prove the following interpolation inequality:

$$
\int_{\Omega}\|D u\|^{p} d x \leq C\left(\int_{\Omega}|u|^{p} d x\right)^{1 / 2}\left(\int_{\Omega}\left\|D^{2} u\right\|^{p} d x\right)^{1 / 2}
$$

for $2 \leq p<\infty$ and all $u \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$ where C is some constant.
28. Compute the Fourier transform of $\mathscr{P}(1 / x)$, the Cauchy principle part.
29. Let $f \in \mathscr{S}\left(\mathbb{R}^{n}, R\right.$ a rotation, and define a map $D_{\lambda} x=\lambda x$ on \mathbb{R}^{n}.
(a) Prove that $\widehat{f \circ R}=\hat{f} \circ R^{t}$, where R^{t} is the transpose of R.
(b) Prove that $\widehat{f \circ D_{\lambda}}=\lambda^{-n} \hat{f} \circ D_{\lambda^{-1}}$.
(c) Let $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and prove that $\widehat{T \circ R}=\hat{T} \circ R^{t}$ and $\widehat{T \circ D_{\lambda}}=\lambda^{-n} \hat{T} \circ D_{\lambda^{-1}}$.
30. Find a function $f(x)$ that satisfies all the conditions in the definition of a function of positive type except continuity. To which function of positive type is $f(x)$ equal a.e.?
31. Solve the following initial value problem:

$$
\begin{cases}u_{t t}-\Delta u=0 & \text { in } \mathbb{R}^{n} \times(0, \infty) \\ u=g, u_{t}=0 & \text { on } \mathbb{R}^{n} \times\{t=0\}\end{cases}
$$

32. Given $d>0$, solve the following initial value problem:

$$
\begin{cases}u_{t t}+2 d u_{t}-u_{x x}=0 & \text { in } \mathbb{R} \times(0, \infty) \\ u=g, u_{t}=h & \text { on } \mathbb{R} \times\{t=0\}\end{cases}
$$

33. Let \mathbb{D} be the closed unit disk in \mathbb{C} and let $\mathcal{A}=\{f \in C(\mathbb{D}): f$ is analytic on $\mathbb{D}\}$. For $f \in \mathcal{A}$, define $f^{*}(z)=\overline{f(\bar{z})}$. Show that $f \mapsto f^{*}$ is an involution on \mathcal{A} and $\left\|f^{*}\right\|=\|f\|$ for all $f \in \mathcal{A}$, but \mathcal{A} is not a C^{*}-algebra.
34. Let \mathcal{A} be a C^{*}-algebra and let X be a locally compact space. Show that:

$$
C_{0}(X, \mathcal{A})=\{f \in C(X, \mathcal{A}): \text { for every } \varepsilon>0\{x:\|f(x)\| \geq \varepsilon\} \text { is compact }\}
$$

is a C^{*}-algebra, where all the operations are defined pointwise and the norm is the sup norm, that is $\|f\|=\sup \{\|f(x)\|: x \in X\}$
35. Using the notation from the previous problem, show that if X and Y are locally compact spaces, then there is a natural $*$-isomorphism from $C_{0}\left(X, C_{0}(Y)\right)$ onto $C_{0}(X \times Y)$.
36. Let \mathcal{A} be a Banach algebra with identity. Prove that if $a \in \mathcal{A}$ and $f \in \operatorname{Hol}(a)$, then $\sigma(f(a))=f(\sigma(a))$.
37. Prove that if \mathcal{A} is a Banach algebra with identity, $a \in \mathcal{A}, f \in \operatorname{Hol}(a)$, and g is analytic in a neighborhood of $f(\sigma(a))$, then $g \circ f \in \operatorname{Hol}(a)$ and $g(f(a))=(g \circ f)(a)$.
38. Let X be a compact subset of \mathbb{C}. Prove that $C(X)$ is a C^{*}-algebra with a single generator.
39. A projection in a C^{*}-algebra is a Hermitian idempotent, that is $a^{*}=a$ and $a^{2}=a$. If X is a compact space, show that X is totally disconnected if and only if $C(X)$, as a C^{*}-algebra, is generated by its projections.
40. If \mathcal{A} is a unital C^{*}-algebra and $a \in \operatorname{Re} \mathcal{A}$, show that $U=e^{i a}$ is a unitary. Is the converse true? (Be sure to justify.)
41. Let \mathcal{A} be a C^{*}-algebra. We say $a \in \mathcal{A}$ has a logarithm, if there is a $b \in \mathcal{A}$ such that $e^{b}=a$. If $a \in \mathcal{A}_{+}$, show that a has a positive logarithm if and only if a is invertible. Moreover show that an invertible Hermitian element always has a logarithm. Is this logarithm Hermitian?
42. Let \mathcal{A} be a C^{*}-algebra, show that if $a \in \operatorname{Re} \mathcal{A}$, then $|a|=a_{+}+a_{-}$.
43. Give an example of a C^{*}-algebra \mathcal{A} and two positive elements, $a, b \in \mathcal{A}$ such that $a b$ is not positive. If $a b=b a$, show that $a b \in \mathcal{A}_{+}$.
44. Let \mathcal{A} be a C^{*}-algebra. Show that each element $a \in B_{\mathrm{Re} \mathcal{A}}$ is the sum of two unitaries in \mathcal{A}.
45. If \mathcal{A} is a C^{*}-algebra, \mathcal{I} is a closed ideal of \mathcal{A}, and \mathcal{B} is a C^{*}-subalgebra of \mathcal{A}, show that the C^{*}-algebra generated by $\mathcal{I} \cup \mathcal{B}$ is $\mathcal{I}+\mathcal{B}$.
46. If \mathcal{A} is a C^{*}-algebra and \mathcal{I} and \mathcal{J} are closed ideals of \mathcal{A}, show that $\mathcal{I}+\mathcal{J}$ is a closed ideal of \mathcal{A}.
47. Let \mathbb{D} be the closed unit disk in \mathbb{C}. Give an example of a non-closed ideal of $C(\mathbb{D})$ that is not self-adjoint.
48. Let (X, Ω, μ) be a σ-finite measure space and M_{φ} be the multiplication operator by φ in $L^{2}(\Omega)$. Recall that $\pi: L^{\infty}(\Omega) \rightarrow \mathcal{B}\left(L^{2}(\Omega)\right)$ defined by $\pi(\varphi)=M_{\varphi}$ is a representation. Prove that π is cyclic and that a $f \in L^{2}(\Omega)$ is a cyclic vector for π if and only if f does not vanish on a set of positive μ measure.
49. Let \mathcal{A} be any C^{*}-algebra contained in $\mathcal{B}(\mathcal{H})$ that contains the compact operators. If $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ is the identity representation, show that $\pi^{(\infty)}$ is a cyclic representation.
50. Let \mathcal{A} be a C^{*}-algebra, $\rho: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ be a representation, and \mathcal{I} an ideal of \mathcal{A}. Define $\mathcal{H}_{\mathcal{I}}=\overline{\operatorname{span}\{\rho(\mathcal{I}) \mathcal{H}\}}$ and let $\rho_{\mathcal{I}}: \mathcal{I} \rightarrow \mathcal{B}\left(\mathcal{H}_{\mathcal{I}}\right)$ by $\rho_{\mathcal{I}}(x)=\left.\rho(x)\right|_{\mathcal{H}_{\mathcal{I}}}$. Show that $\rho_{\mathcal{I}}$ is a non-degenerate representation of \mathcal{I}. What is its extension?
51. Show that $\varphi_{0}: \mathcal{B}(\mathcal{H}) / \mathcal{B}_{0}(\mathcal{H}) \rightarrow \mathbb{C}$ is a state if and only if there is a state $\varphi: \mathcal{B}(\mathcal{H}) \rightarrow \mathbb{C}$ such that $\varphi_{0}\left(T+\mathcal{B}_{0}(\mathcal{H})\right)=\varphi(T)$ for every $T \in \mathcal{B}(\mathcal{H})$.
52. Show that an element a in a C^{*}-algebra is positive if and only if $\varphi(a) \geq 0$ for every state φ.
53. Let $\mathcal{A}=M_{n n}(\mathbb{C})$. Define $\tau: \mathcal{A} \rightarrow \mathbb{C}$ by $\tau(a)=\operatorname{tr}(a)$. Prove that τ is a state on \mathcal{A} and construct the Hilbert space via the GNS construction. (Don't forget to identify the representation.)
54. If $A \in \mathcal{B}(\mathcal{H})$, show that A is trace class if and only if

$$
\sum_{\mathcal{E}}|\langle A e, e\rangle|<\infty
$$

for every orthonormal basis \mathcal{E}. Give an example of an orthonormal basis and operator A that is not trace class but such that this series converges absolutely for this particular basis.
55. Let $g, h \in \mathcal{H}$. Recall the finite rank operator $g \otimes h$ defined on \mathcal{H} is given by $(g \otimes h)(f)=$ $\langle f, g\rangle h$ for $f \in \mathcal{H}$. Show that $\|g \otimes h\|_{\text {op }}=\|g \otimes h\|_{1}=\|g \otimes h\|_{2}=\|g\|\|h\|$.
56. For $p>0$, define the following class of operators: $\mathcal{B}_{p}(\mathcal{H})=\left\{A:|A|^{p / 2} \in \mathcal{B}_{2}(\mathcal{H})\right\}$. This class is called the Schatten p-class. If $A \in \mathcal{B}_{p}(\mathcal{H})$, let $\|A\|_{p}=\left\||A|^{p / 2}\right\|^{2 / p}$. Prove that $\mathcal{B}_{p}(\mathcal{H})$ is a vector space and a Banach space.
57. Let T be a closed Fredholm operator with compact resolvent. Prove that $\sigma_{c}(T)=\emptyset$. Is it necessary that the resolvent be compact? (Be sure to justify.)
58. Let T be a Fredholm operator with $\operatorname{Ker}(T)$ and $\operatorname{Ker}\left(T^{*}\right)$ both non-zero. Show that for every $\varepsilon>0$, there is a Fredholm operator S with $\|S-T\|<\varepsilon$, $\operatorname{dim} \operatorname{Ker}(S)<\operatorname{dim} \operatorname{Ker}(T)$, and $\operatorname{dim} \operatorname{Ker}\left(S^{*}\right)<\operatorname{dim} \operatorname{Ker}\left(T^{*}\right)$. Can these inequalities be reversed?
59. If $\pi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H}) / \mathcal{B}_{0}(\mathcal{H})$ is the natural map, show that if $A \in \mathcal{B}(\mathcal{H})$ and $\pi(A)$ is Hermitian, then there is a self-adjoint operator B such that $A-B \in \mathcal{B}_{0}(\mathcal{H})$. If $\pi(A)$ is positive, show there is a positive operator B such that $A-B \in \mathcal{B}_{0}(\mathcal{H})$.

